سه شنبه 3 اسفند 1395 - 24 جمادي الاول 1438 - 21 فوريه 2017
فرم کلی معادله درجه یک به صورت ax+b=0 می باشد و جواب آن به صورت x=- b/a می باشد...
عکس نویسنده
عکس نویسنده
نویسنده : پروین نظری
بازدید :
زمان تقریبی مطالعه :

معادلات و نامعادلات حداکثر درجه 2

این مقاله برای کلیه دانش آموزان به خصوص در مقطع دهم مناسب است زیرا  حل معادلات و نامعادلات از جمله مباحث پایه ای محسوب می شود.

معادلات و نامعادلات حداکثر درجه 2

معادلات درجه 1 و درجه 2

فرم کلی معادله درجه یک به صورت ax+b=0 می باشد و جواب آن به صورت x=- b/a می باشد.
فرم کلی معادله درجه 2 به صورتax2 +bx+c=0   می باشد که برای حل آن روش های مختلفی وجود دارد.ازجمله روش تجزیه، مربع کامل کردن و روش دلتا. 
در روش تجزیه اغلب از اتحاد مربع، مزدوج،جمله مشترک و یا فاکتورگیری  استفاده می شود.
در حل معادله درجه 2لازم است بدانیم :
1) هرگاه حاصلضرب دو یا چند عبارت برابر صفر باشد، تک تک عبارات می تواند صفر باشد. یعنی
A.B.C=0 ->      A=0 , B=0 , C=0                                                    
2) هرگاه معادله درجه 2 به شکل (ax+b)2=q   باشد (باید q≥0 باشد و گرنه معادله جواب ندارد زیرا سمت چپ همواره مثبت است) می توانیم از دو طرف جذر بگیریم فقط باید دقت کنیم در این حالت چون متغیر از زیر رادیکال بیرون می آید سمت راست با مثبت و منفی ظاهر می شود. سپس دو معادله درجه یک خواهیم داشت باحل آنها جواب معادله بدست می آید.

معادلات و نامعادلات حداکثر درجه 2

مثال: معادلات زیر را به روش تجزیه حل کنید:

معادلات و نامعادلات حداکثر درجه 2

حل معادله درجه 2 به روش مربع کامل
در حل معادله درجه 2 به روش مربع کامل باید معادله درجه دو  در نهایت به شکل (ax+b)2=q   تبدیل شود . که به همین منظور باید مراحل زیر طی شود:
1) فقط عدد ثابت را به سمت راست منتقل می کنیم
2) باید ضریب x2  یک باشد اگر نبود، کل معادله را به ضریب x2 تقسیم می کنیم. 
3) 2 (نصف ضریب x) را به دو طرف اضافه می کنیم
4) سمت چپ را به شکل اتحاد مربع می نویسیم. اکنون معادله به فرم (ax+b)2=q  رسیده است.که روش حل آن را قبلا توضیح دادیم.
مثال: معادله زیر را به روش مربع کامل حل کنید:

معادلات و نامعادلات حداکثر درجه 2



روش کلی یا دلتا
در این روش برای حل معادله درجه 2 باید فرمول های زیر را حفظ باشید:

معادلات و نامعادلات حداکثر درجه 2

معادلات و نامعادلات حداکثر درجه 2  نکته:
1) اگر>0∆   معادله دارای دو ریشه حقیقی می باشد
2) اگر <0∆ معادله اصلا ریشه ندارد.
3) اگر0=∆ معادله یک ریشه مضاعف یا تکراری دارد.
4) مثال: معادله زیر را حل کنید.

معادلات و نامعادلات حداکثر درجه 2

باید دقت شود اگر دو طرف نامعادله در عددی منفی ضرب یا تقسیم شوند علامت نامساوی برمی گردد.

معادلات و نامعادلات حداکثر درجه 2   

  نامعادلات

در نامعادله برعکس معادله علامت مساوی نداریم بلکه انواع علامت های نامساوی را داریم .دو نوع نامعادله را بررسی می کنیم. نامعادله درجه 1 و نامعادله درجه2.
در نامعادله درجه 1 به فرم ax+b<0 دقیقا مانند معادله رفتار می کنیم منهتا باید دقت شود اگر دو طرف نامعادله در عددی منفی ضرب یا تقسیم شوند علامت نامساوی برمی گردد. به مثال زیر دقت کنید:

معادلات و نامعادلات حداکثر درجه 2


می توانیم در مثال فوق محدوده جواب یا x ها را به صورت بازه یا روی نمودار نیز نشان دهیم.
در نامعادله درجه دو حتما باید از طریق جدول تعیین علامت به جواب ها برسیم جواب ها از طریق سطر آخر جدول تعیین علامت بدست می آیند که می توان آن را به صورت بازه نشان داد. جدول تعیین علامت معادلات درجه 1 و2  در حالت کلی به صورت زیر می باشد. البته گفتیم در حالت نامعادله درجه به راحتی مانند معادله درجه 1 حل می شود.

معادلات و نامعادلات حداکثر درجه 2

معادلات و نامعادلات حداکثر درجه 2

مثال: نامعادله زیر را حل کنید.

معادلات و نامعادلات حداکثر درجه 2


بازه [0,+∞ )  جواب این نامعادله را نشان می دهد زیرا فقط در این بازه است که نامعادله بزگتر از صفر و یا مثبت است.

معادلات و نامعادلات حداکثر درجه 2


با یادگیری دو نامعادله فوق  تقریبا بیشتر نامعادله ها از طریق جدول تعیین علامت ،قابل حل است.
مثال: نامعادلات زیر را حل کنید:

معادلات و نامعادلات حداکثر درجه 2

معادلات و نامعادلات حداکثر درجه 2

پروین نظری- مرکز یادگیری سایت تبیان

تلفن : 81200000
پست الکترونیک : public@tebyan.com
آدرس : بلوارکشاورز ، خیابان نادری ، نبش حجت دوست ، پلاک 12

ارتباط با ما

روابط عمومی

درباره ما

نقشه سایت

تعدادبازدیدکنندگان
افراد آنلاین