• مشکی
  • سفید
  • سبز
  • آبی
  • قرمز
  • نارنجی
  • بنفش
  • طلایی
  • تعداد بازديد :
  • 9878
  • دوشنبه 26/4/1385
  • تاريخ :

لاستیک- طبیعی و صنایع



ولکانیزاسیون

در اوایل سده شانزدهم، کلمب و دیگر کاوشگران اسپانیایی مشاهده کردند که سرخپوستان آمریکایی جنوبی با توپی که از شیره گیاهی یا شیرابه ی انواع خاصی از درختان درست شده بود بازی می کردند. یکی از نام هایی که سرخپوستان بر شیرابه اطلاق می کردند هِـوِئا بود، و مهمترین درختی که شیرابه مزبور را از آن به دست می آوردند هوئا برزیلینسیس نام داشت. گر چه کاوشگران اسپانیایی مقداری از این" صمغ هندی" را با خود به اروپا آوردند، اما استفاده چندانی از آن نشد، تا سرانجام جوزف پریستلی، کاشف اکسیژن، نشان داد که مالش آن بر خطوطی که با مداد نوشته شده باشند، آنها را پاک می کند. بر اساس همین کاربرد نسبتاً عوامانه اما با وجود ای پر فایده، امروزه در زبان انگلیسی لاستیک راRUBBER می خوانند.

علت این که اروپاییان در طی دو قرن نتوانستند استفاده مهمی برای لاستیک بیابند این بود که در دماهای زیاد نرم، چسبنده، و در دماهای کمتر سفت و شکننده می شد. چارلز مکینتاش اسکاتلندی دو قطعه پارچه را از لاستیک می پوشاند و در حالی که لاستیک در و سط آن دو به عنوان چسب عمل می کرد، آنها را به یکدیگر می فشرد؛ بدین ترتیب با استفاده از چسبندگی لاستیک در حرارت های بالا، مصرفی برای لاستیک هندی پیدا کرد.

مکینتاش از پارچه مضاعفی که با این روش ضد آب شده بود برای تولید بارانی استفاده می کرد. بدین ترتیب بارانی مکینتاش اختراع شد، و هنوز هم در انگلستان لباس های بارانی را که از پارچه های امروزی تهیه شده باشند به همین نام می خوانند.

در ابتدا چکمه ها و کفش هایی که از لاستیک یا پارچه های پوشیده از لاستیک تهیه شده بودند در انگلستان تولید و به ایالات متحده صادر می شدند؛ بعدها در دهه 1830، در خود ایالات متحده به مرحله تولید رسیدند. اما چندی نگذشت که آمریکاییان از کفش هایی که در زمستان سفت و در تابستان نرم و بی شکل می شدند بیزار شدند. در همین زمان بود که چارلز گودییر وارد صحنه شد.

گودییر در سال 1800 در نیوهیون کانتیکت به دنیا آمد. پدرش مخترع و تاجر ناموفقی بود. گودییر جوان دوست داشت راهی برای مقاوم ساختن لاستیک در برابر تغییرات دما بیابد تا در مصارف گوناگونی کاربرد پیدا کند. این علاقه به شیفتگی عمیقی تبدیل شد که سلامتی و سرمایه اندکی را که او و خانواده اش در فاصله سالهای 1830 تا 1839 داشتند، به باد داد. دراین مدت گودییر چندین بار به زندان بدهکاران افتاد؛ برای تامین غذا و مسکن محتاج خویشاوندانش شد؛ اما باز هم شیفتگی اش باقی بود. یکی از شکست های زندگی اش فروش تعداد زیادی کیسه نامه به دولت بود که برای ضد آب شدن با لاستیک آمیخته شده بودند، اما هنوز آنها را از کارخانه بیرون نبرده بودند که در برابر گرما چسبناک و بی شکل شدند.

پس از تلاش های ناموفق و غیرعلمی بسیاری که برای بهبود لاستیک انجام داد، در یکی از این تلاش ها که قصد داشت آن را با گوگرد مخلوط کند، تصادفاً مخلوطی از لاستیک و گوگرد با اجاق تماس پیدا کرد. گود ییر در کمال شگفتی مشاهده کرد که لاستیک ذوب نشد، بلکه مثل قطعه ای چرم فقط کمی سوخت. گودییر بلافاصله به اهمیت این تصادف پی برد. بعدها دخترش گفت:

همچنان که از اتاقش می گذشتم، بر حسب اتفاق قطعه صمغ کوچکی را که نزدیک آتش گرفته بود دیدم و نیز متوجه شدم که بر اثر اکتشافی که ظاهراً کرده بود، برخلاصه همیشه حالتی سرزنده داشت. قطعه صمغ را در سرمای شدید بیرون در آشپزخانه بر میخی آویزان کرد. وقتی آن را صبح روز بعد به داخل آورد، با خوشحالی بر دست بلندش کرد. آن را درست مثل روز قبل که بیرونش گذاشته بود، ارتجاعی یافت.

گودییر پس از انجام آزمایش های بیشتر، بهترین دما و مدت حرارت را برای تثبیت لاستیک تعیین کرد. تقاضای ثبت اکتشافش را کرد، و در سال 1844 فرایند خود را بر اساس نام خدای آتش روم باستان، ولکان، فرایند ولکانیزاسیون نامید، که به نام او ثبت شد.


پسنوشت

وقتی لاستیک در مجاورت گوگرد حرارت داده شود، اتمهای گوگرد زنجیره های بلند مولکول های پلیمری لاستیک را به یکدیگر متصل می کنند و بدین ترتیب ماده زمینه ای لاستیک را به توده یکپارچه ای تبدیل می کنند که حساسیت کمتری به تغییر دما نشان می دهد.

اگر بخواهیم تعریف والپول را به طور کاملاً دقیق تفسیر کنیم، کشف تصادفی ولکانیزاسیون لاستیک به دست گودییر را نمی توان بخت یارانه نامید. به جای اینکه چیزی را که مورد جست و جو نبود به طور تصادفی کشف کند، تصادفاً راه حلی پیدا کرد که سخت به دنبال آن بود. همان طور که در دیباچه گفته ام نمونه های بسیاری از تصادف های پر برکت می توان یافت که وقوع آنها منجر به اکتشافاتی شده است، و تا زمانی که این حوادث اتفاق نیفتاده بودند، کسانی که به دنبال چیزی بودند آن را نمی یافتند. این تصادف ها درست آن مفهومی را که منظور والپول از بخت یاری بود نمی رسانند، ولی آن قدر شبیه اند که می توان آنها را شبه بخت یاری نامید.

گودییر حتی پس از کشف فرایند ولکا نیزاسیون هم زندگی خوشی نداشت. درگیر دفاع قانونی از حق امتیاز اکتشافش شد، و اگر چه دانیال وبستر توانست در یکی از پرونده های نقض امتیازش او را در دادگاه پیروز کند، اما تا زمان مرگش در سال 1860 ، هرگز نتوانست از زیر بار سنگین بدهیهایش کمر راست کند. با این حال فرایند ولکا نیزاسیون منجر به فعالیت گسترده ای در زمینه تولید و مصرف لاستیک شد. تا سال 1858، ارزش اجناس تولید شده از لاستیک به حدود 5000000 دلار رسید. بزرگترین شرکتهای لاستیک سازی از جمله شرکت گودییر از سال 1870 به بعد در آکرون اوهایو تاسیس شدند. این قبل از اختراع اتوموبیل، کامیون و هواپیما بود، که قسمت اعظم لاستیکی که امروزه مصرف می شود در تایرهای آنها به کار رفته است.


لاستیک صناعی

دو لاستیک صناعی که برای نخستین بار با موفقیت تجاری همراه بودند، یعنی نئوپرن و تیوکول، هر دو برحسب تصادف تولید شدند. کشف نئوپرن شبه بخت یارانه و کشف تیوکول بخت یارانه بود.

شیمیدانان با حرارت دادن لاستیک در شرایط تنظیم شده و شناسایی قطعاتی که از تجزیه آن به دست می آمد، مطالبی در باره ساختار مولکولی لاستیک آموختند. یکی از این قطعات ایزوپرن بود، که ترکیبی پنج کربنی با دو پیوند مضاعف است. در سال 1920 هرمان استاودینگر مقاله معروفی نوشت که در آن برای ساختار فراورده های طبیعی مهمی نظیر لاستیک، سلولوز، و پروتئین ها، و نیز برخی مواد صناعی که ویژگی های مشابهی داشتند، توجیهی ارائه شده بود. به نظر وی این مواد، که ظاهراً با ترکیبات آلی ساده تر تفاوت مرموزی داشتند، پلیمر بودند ( این کلمه از دو واژه یونانی پلی به معنای چندین و مروس به معنای پاره یا قطعه مشتق شده است). پلیمرها از مولکول های عظیمی تشکیل شده اند که در آنها واحدهای تکرارشونده با همان انواعی از پیوندهای شیمیای که در ترکیبات ساده تر دیده می شوند به هم متصل شده اند. به عنوان نمونه فرمول مولکول لاستیک چنین پیشنهاد شد:

فرض شد که تعداد زیادی واحد ایزوپرن " منومر" ( لغتاً به معنای " یک پاره" ) در درخت کائوچو طی واکنش های زیست شناختی به یکدیگر متصل می شوند و مولکول های پلیمری بزرگ لاستیک به دست می آید.

پس از آنکه این فرمول برای لاستیک طبیعی پیشنهاد شد، تلاشهای زیادی برای تهیه نوعی لاستیک صناعی که ساختار مولکول و خاصیت ارتجاعی لاستیک به دست آمده از درخت را داشته باشد انجام شد. ایزوپرن در معرض کاتالیزورهای مختلفی قرار گرفت تا معلوم شود آیا به شکل چیزی مثل لاستیک پلیمریزه می شود یا نه. این تلاش ها به اندازه ای موفقیت آمیز بودند که مشخص شد نظریه استاد و دینگر صحیح است، اما جنبه های جزئیتر ساختار مولکولی ناشناخته بودند، تا سرانجام کارل زیگلر در 1953 کاتالیزورهای تنظیم کننده آرایش فضایی را کشف کرد ( در فصل 26 در باره این اکتشاف بخت یارانه توضیح داده شده است). معلوم شد که در لاستیک طبیعی آرایش واحدهای منومر ایزوپرن " تمام – سیس" است؛ این آرایش را می شد با کاتالیزورهای جدید در لاستیک صناعی تقلید کرد، در حالی که کاتالیزورهای قبلی باعث ایجاد آرایش اتفاقی واحدهای سیس و ترانس می شدند. تنها از این موقع بود که تولید لاستیک صناعی مقدور گردید، به نحوی که تقریباً نمی شد فرقی بین آن و همتای طبیعی اش گذاشت. امروز مهمترین عامل تعیین کننده استفاده از لاستیک طبیعی یا صناعی در ساخت تایر و تولیدات دیگر قیمت نفت است، که ماده اولیه لاستیک صناعی است.

دکتر و. س. کلکات، که در آزمایشگاه جکسون شرکت دوپون پژوهش می کرد، متوجه تحقیقاتی که پدر نیولند در دانشگاه نوتردام انجام داده بود شد. نیولند کشیشی کاتولیک، رئیس نوتردام و شیمیدان بود. او با انتشار نتایج تحقیقاتش نشان داد که استیلن، هیدروکربنی که فرمولH2 C2 را دارد، تحت شرایطی یک یا دوبار به خود اضافه می شود، و وینیل استیلن و دی وینیل استیلن، که مولکول هایی با فرمولC6H6,C4H4 هستند، ایجاد می کند. به عقیده کلکات ممکن بود این دیمرها و تریمرها آن قدر به واحد سازنده لاستیک طبیعی، یا ایزوپرن، شباهت داشته باشند که بتوان از آنها برای تهیه لاستیک صناعی استفاده کرد. عده ای از شیمیدانان زیر دست خود را در دوپون به این کار مشغول ساخت، اما موفقیتی نصیب شان نشد، بنابر این نزد والاس کارودرز رفت، که در ایستگاه آزمایشی دوپون که محل انجام مهمترین پژوهش ها در زمینه پلیمرها بود مقام سرگروهی داشت.

کارودرز به مسئله علاقه مند شد. از شیمیدانی به نام آرنولد کالینز که زیر نظرش کار می کرد خواست تا نمونه ای از مخلوط خامی را که به روش نیولند از استیلن به دست می آمد تخلیص کند. وقتی کالینز این کار را انجام داد توانست مقدار ناچیزی مایع جدا کند که به نظر می رسید نه وینیل استیلن باشد نه دی وینیل استیلن، و نیولند نیز آن را شرح نداده بود. اما آن را دور نریخت، بلکه در مدت تعطیلات آخر هفته بر میز کارش در کناری گذاشت. وقتی دوشنبه برگشت متوجه شد که مایع سفت شده است، و وقتی آنرا بررسی کرد، دریافت که حالتی لاستیکی پیدا کرده است، تا حدی که وقتی آن را روی میزش می انداخت، برمی گشت.

شاید بگویید این هیچ تصادف نبود، بلکه همان چیزی بود که کلکات انتظارش را می کشید یا حتی پیش بینی می کرد. اما وقتی این جامد لاستیکی مورد تجزیه و تحلیل قرار گرفت، معلوم شد شکل پلیمری هیدروکربن استیلن نیست، بلکه در آن کلر وجود دارد، که کاملاً غیر مترقبه بود. ظاهراً این کلر ناشی از اسید کلریدریک (HCI) بود که در روش نیولند برای به دست آوردن دیمر و تریمر استیلن استفاده می شد، و به وینیل استیلن اضافه شده بود. محصولی که از این اضافه شدن به دست آمد به دلیل شباهتش به ایزوپرن، کلروپرن نام گرفت. تنها تفاوتی که وجود داشت این بود که در مولکول منومر آن، اتم کلر به جای یک گروه متیل ( واحدی مولکولی متشکل از یک اتم کربن متصل به سه اتم هیدروژن، یعنی CH3) قرار گرفته بود. این پلیمر یزاسیون خود به خودی کلروپرن در طی تعطیلات آخر هفته بر میزکالینز ایجاد جامد لاستیک مانندی کرده بود که شرکت دوپون نئوپرن نامید.

معلوم شد که این لاستیک صناعی جدید بر خلاف لاستیک طبیعی مقاومت زیادی در برابر نفت، بنزین واوزون دارد. همین ویژگی ها باعث شد دوپون آن را با وجود گرانتر بودنش در مقایسه با لاستیک طبیعی، در سال 1930 تولید و به بازار عرض کند. نئوپرن هنوز هم مفید و ارزشمند است؛ دوامش در کار بردهای سنگینی همچون شلنگهای صنعتی، پوشش کف کفش، درزگیری دور شیشه ، تسمه های انتقال نیروهای مکانیکی سنگین و پوشش کابل های برق، اثبات شده است. از کاربردهای تازه و جالب آن، استفاده از نئوپرن به عنوان ماده چسباننده کمربندهای چرمی دو لایه است: با این ماده می توان دو نوار چرمی سیاه و قهوه ای را بدون دوزندگی بطور دایمی به هم چسباند و کمربندهای دو رنگ قابل تعویض تولید کرد.

در سال 1924 ج . س . پاتریک تصمیم گرفت از مقادیر زیاد اتیلن و گاز کلر که محصول جانبی فرایندهای صنعتی بود، ماده مفیدی تهیه کند. از قبل می دانستندکه از ترکیب این دو ماده دی کلرید اتیلن به دست می آید؛ پاتریک مشغول آزمایش بر روی واکنش مواد مختلف با دی کلرید اتیلن بود، به این امید که اتیلن گلیکول، که محصول قابل فروشی بود، تولید شود. یکی از موادی که امتحان کرد پلی سولفید سدیم بود. واکنش این ماده با دی کلرید اتیلن موجب تولید مایع گلیکولی که به دنبال آن بود نشد، بلکه ماده ای نیمه جامد و لاستیکی به دست آمد. پاتریک بی درنگ به اهمیت بالقوه این جسم لاستیکی پیش بینی نشده پی برد، و طرح پژوهشی گسترده ای را آغاز کرد که پس از مدت کوتاهی به در خواست ثبت امتیاز و تاسیس شرکتی برای تولید این لاستیک صناعی جدید منجر شد.

شرکت شیمیایی تیوکول، که پاتریک رئیس آن بود، تیوکول A را در سال 1929 به بازار فرستاد. ساختار مولکولی آن با لاستیک طبیعی کاملاً تفاوت داشت، ولی در عین حال ارتجاعی بود. نسبت به لاستیک طبیعی یک برتری داشت و آن اینکه مثل نئوپرن در برابر مواد نفتی مقاوم بود. اما چندی نگذشت که عیب بزرگ آن معلوم شد: بوی گندی داشت!

شرکت تیوکول و دیگران لاستیک های پلی سولفید متعددی تولید کردند. در به کار گرفتن آنها از مقاومتشان در مقابل فراورده های نفتی و ویژگی های عایقکاری خوبشان نظیر درزگرفتن دور شیشه های اتومبیل و پوشاندن مخازن سوختی که در بالهای هواپیماها وجود دارند استفاده می شد. چون لاستیک های تیوکول را می شد در دمای پایین تثبیت کرد، مدتی از آنها به عنوان چسباننده و جزئی از سوخت های جامد موشک برای پرتاب ماهواره ها و سفینه های فضایی به مدار استفاده می شد.در سال 1982 شرکت نمک مورتون، شرکت تیوکول را خرید و تشکیل شرکت مورتون تیوکول را داد؛ هر دو شرکت قبل از ادغام در یکدیگر مواد شیمیایی تخصصی تولید کرده بودند و پس از ادغام نیز به کار خود ادامه دادند. شرکت مورتون تیوکول که از پیمانکاران عمده در ساخت شاتل فضایی نا فرجام چلنجر بود، دچار بدنامی زیادی شد. اما حلقه O شکلی که انفجار سفینه فضایی مزبور را به آن نسبت می دادند از لاستیک های صناعی پلی سولفید تیوکول نبود، بلکه آن را از ویتون، نوعی پلیمر ارتجاعی که از لحاظ شیمیایی بیشتر به تفلون شباهت دارد، تهیه کرده بودند.

منبع : سرگذشت اكتشافات تصادفی در علم - نوشته : رویستون رابرتس - مترجم: محی الدین غفرانی

UserName